A complete set of local invariants for a family of multipartite mixed states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 J. Phys. A: Math. Theor. 41025305
(http://iopscience.iop.org/1751-8121/41/2/025305)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.148
The article was downloaded on 03/06/2010 at 06:48

Please note that terms and conditions apply.

A complete set of local invariants for a family of multipartite mixed states

Xiao-Hong Wang ${ }^{1}$, Shao-Ming Fei ${ }^{1,2}$ and Ke Wu ${ }^{1}$
${ }^{1}$ Department of Mathematics, Capital Normal University, Beijing, People's Republic of China
${ }^{2}$ Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany

Received 5 July 2007, in final form 14 November 2007
Published 19 December 2007
Online at stacks.iop.org/JPhysA/41/025305

Abstract

We study the equivalence of quantum states under local unitary transformations by using the singular value decomposition. A complete set of invariants under local unitary transformations is presented for several classes of tripartite mixed states in $\mathbb{C}^{K} \otimes \mathbb{C}^{M} \otimes \mathbb{C}^{N}$ composite systems. Two density matrices in the same class are equivalent under local unitary transformations if and only if all these invariants have equal values for these density matrices.

PACS numbers: 03.67.-a, 02.20.Hj, 03.65.-w

1. Introduction

Quantum entanglement is playing a very important role in quantum information processing. Quantum entangled states are the key resource in quantum information processing [1] such as teleportation, super-dense coding, key distribution, error correction and quantum repeaters. Therefore, it is of great importance to classify and characterize the quantum states.

The nature of the entanglement among the parts of a composite system does not depend on the labeling of the basis states of the individual subsystems. It is therefore invariant under unitary transformations of the individual state spaces. Such transformations are referred to as local unitary transformations. The polynomial invariants of local unitary transformations have been discussed in [2-4]. General methods, which allow us in principle to compute all such invariants, but are in fact not really operational, were introduced in [5-8]. More explicit complete and partial solutions have been found for some special cases: two qubit [9] and three qubit [10, 11] systems, three qutrits [12], generic mixed states [13] and special families of tripartite pure qudits [14-16].

The problem of classifying states under local unitary transformations can be solved completely for bipartite pure states. As the set of Schmidt coefficients forms a complete set of invariants under local unitary transformations, two bipartite pure states are equivalent under local unitary transformations if and only if they have the same Schmidt coefficients. For a multiple composite system, there does not exist Schmidt decomposition in general. There
are different generalizations for Schmidt decomposition in multipartite quantum pure states [17-21], but the results are not sufficient to solve the local equivalence problem. For multipartite mixed states, much less is known about the equivalence under local unitary transformations.

Another classification of quantum states is the one under stochastic local operations and classical communications (SLOCC). Invariants under SLOCC have also been extensively studied [22-24]. Recently, Lamata et al [25] used the method of singular value decomposition and presented an inductive classification of multipartite qubit systems under SLOCC.

In this paper, we study the equivalence of multipartite mixed states under local unitary transformations by using the singular value decomposition. Let \mathcal{H}_{1} (resp. \mathcal{H}_{2}) be M (resp. N) dimensional complex Hilbert spaces $(M \leqslant N)$. A mixed state ρ in $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ with rank $r(\rho)=n \leqslant M^{2}$ can be decomposed according to its eigenvalues λ_{i} and eigenvectors $\left|\nu_{i}\right\rangle, i=1, \ldots, n$:

$$
\rho=\sum_{i=1}^{n} \lambda_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|
$$

In [26], a class of bipartite mixed states Γ_{0} has been defined; Γ_{0} contains all the states ρ in $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ satisfying

$$
\begin{equation*}
\left[\rho_{i}, \rho_{j}\right]=0, \quad\left[\theta_{i}, \theta_{j}\right]=0, \quad i, j=1,2, \ldots, n \tag{1}
\end{equation*}
$$

where ρ_{i} are full rank matrices,

$$
\rho_{i}=\operatorname{Tr}_{2}\left|v_{i}\right\rangle\left\langle v_{i}\right|, \quad \theta_{i}=\left(\operatorname{Tr}_{1}\left|v_{i}\right\rangle\left\langle v_{i}\right|\right)^{*}, \quad i=1, \ldots, n,
$$

and Tr_{1} (resp. Tr_{2}) denotes the partial trace over $\mathcal{H}_{1}\left(\right.$ resp. $\left.\mathcal{H}_{2}\right)$. We denote by ${ }^{\dagger}$, ${ }^{*}$ and ${ }^{t}$ the adjoint, complex conjugation and transposition, respectively.

It has been shown that two mixed states in Γ_{0} are equivalent under local unitary transformations if and only if the following invariants ((a) or (b)) have the same values for both mixed states [26]:
(a) $\operatorname{Tr}\left(\rho_{i}^{\alpha}\right), \quad \operatorname{Tr}\left(\rho^{\gamma}\right), \quad \alpha=1,2, \ldots, M, \quad \gamma=1,2, \ldots, M N$.
(b) $\operatorname{Tr}\left(\theta_{i}^{\beta}\right), \quad \operatorname{Tr}\left(\rho^{\gamma}\right), \quad \beta=1,2, \ldots, N, \quad \gamma=1,2, \ldots, M N$.

The set of such states in Γ_{0} is not trivial. In fact, Γ_{0} is a subset of the Schmidt-correlated (SC) states [27]. The SC states are defined as mixtures of pure states, sharing the same Schmidt bases. It first appeared in [28], named as maximally correlated state. For SC states, for any classical measurement, two observers Alice and Bob will always obtain the same result. Two SC states can always be optimally discriminated locally. It is interesting that maximally entangled states (Bell state) can always be expressed in Schmidt-correlated form. SC states naturally appear in a bipartite system dynamics with additive integrals of motion [29]. Hence, these states form an important class of mixed states from a quantum dynamical perspective. From the definition of SC state, we know that the states in Γ_{0} are all SC states. Therefore, we can judge whether a state in Γ_{0} is separable or not by calculating the negativity of this state [30].

Here we give a simple way to construct some families of states in Γ_{0}. For $M=N=4$, one can set $\left|\psi_{1}\right\rangle=(|00\rangle+|12\rangle+|21\rangle+|33\rangle) / 2$ and $\left|\psi_{2}\right\rangle=(|01\rangle+|10\rangle+|23\rangle+|32\rangle) / 2$, where $|i j\rangle, i=0,1, \ldots, M-1, j=0,1, \ldots, N-1$, are the basis of $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$. Then $\rho=\alpha\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+(1-\alpha)\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|$ is a rank-two state belonging to Γ_{0} for $0<\alpha<1$. For general even $M=N=d+1$, a state $\rho=\alpha\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+(1-\alpha)\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|$ is in Γ_{0}, where $\left|\psi_{1}\right\rangle=(|00\rangle+|12\rangle+|21\rangle+|34\rangle+|43\rangle+\cdots+|d d\rangle) / \sqrt{M}$ and $\left|\psi_{2}\right\rangle=$ $(|01\rangle+|10\rangle+|23\rangle+|32\rangle+\cdots+|d-1, d\rangle+|d, d-1\rangle) / \sqrt{M}$.

For $M=N=5$, one can set $\left|\phi_{1}\right\rangle=(|00\rangle+|12\rangle+|21\rangle+|34\rangle+|43\rangle) / \sqrt{5}$ and $\left|\phi_{2}\right\rangle=(|01\rangle+|10\rangle+|23\rangle+|32\rangle+|44\rangle) / \sqrt{5}$. Then $\rho=\alpha\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|+(1-\alpha)\left|\phi_{2}\right\rangle\left\langle\phi_{2}\right|$ is a rank-two state in Γ_{0}. For general odd $M=N,\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$ can be similarly constructed.

We can also construct higher rank states in Γ_{0}. For example, for $M=N=4$, by adding $\left|\psi_{3}\right\rangle=(|11\rangle+|02\rangle+|20\rangle+|33\rangle) / 2$, we have that $\rho=\alpha\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\beta\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|+$ $(1-\alpha-\beta)\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|$ is a state in Γ_{0}. For odd $M=N=5$, we have $\left|\phi_{3}\right\rangle=$ $(|04\rangle+|13\rangle+|22\rangle+|31\rangle+|40\rangle) / \sqrt{5}$ and $\rho=\alpha\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|+\beta\left|\phi_{2}\right\rangle\left\langle\phi_{2}\right|+(1-\alpha-\beta)\left|\phi_{3}\right\rangle\left\langle\phi_{3}\right| \in \Gamma_{0}$.

The states constructed above are all distillable. The rank of reduced density matrices, which are in fact identity matrices, are greater than the rank of ρ itself. They are all NPPT (non-positive partial transpose) entangled states.

2. Tripartite quantum pure states

We first discuss the locally invariant properties of arbitrary dimensional tripartite pure quantum states. Let $\mathcal{H}_{1}, \mathcal{H}_{2}$ and \mathcal{H}_{3} be $K-, M$ - and N-dimensional complex Hilbert spaces with the orthonormal bases $\left\{\left|e_{i}\right\rangle\right\}_{i=1}^{K},\left\{\left|f_{i}\right\rangle\right\}_{i=1}^{M}$ and $\left\{\left|h_{i}\right\rangle\right\}_{i=1}^{N}$, respectively.
$|\Psi\rangle$ can be regarded as a bipartite state by taking \mathcal{H}_{1} (resp. $\mathcal{H}_{2}, \mathcal{H}_{3}$) and $\mathcal{H}_{2} \otimes \mathcal{H}_{3}$ (resp. $\mathcal{H}_{1} \otimes \mathcal{H}_{3}, \mathcal{H}_{1} \otimes \mathcal{H}_{2}$) as the two subsystems. We denote these three bipartite decompositions as $1-23$ (resp. 2-13, 3-12). Let $a_{i j k}$ be the coefficients of $|\Psi\rangle$ in orthonormal bases $\left|e_{i}\right\rangle \otimes\left|f_{j}\right\rangle \otimes\left|h_{k}\right\rangle$. Let A_{1} (resp. A_{2}, A_{3}) denote the matrix with respect to the bipartite state in 1-23 (resp. 2-13, 3-12) decomposition, i.e. taking the subindices i (resp. j, k) and $j k$ (resp. $i k, i j$) of $a_{i j k}$ as the row and column indices of A_{1} (resp. A_{2}, A_{3}).

Taking partial trace of $|\Psi\rangle\langle\Psi|$ over the respective subsystems, we have $\tau_{1}=\operatorname{Tr}_{1}|\Psi\rangle\langle\Psi|=$ $A_{1}^{t} A_{1}^{*}, \tau_{2}=\operatorname{Tr}_{2}|\Psi\rangle\langle\Psi|=A_{2}^{t} A_{2}^{*}$ and $\tau_{3}=\operatorname{Tr}_{3}|\Psi\rangle\langle\Psi|=A_{3}^{t} A_{3}^{*}$. The reduced matrices τ_{1}, τ_{2} and τ_{3} can be decomposed according to their eigenvalues and eigenvectors, e.g.,

$$
\tau_{1}=\sum_{i=1}^{n_{1}} \lambda_{i}^{1}\left|v_{i}^{1}\right\rangle\left\langle v_{i}^{1}\right|
$$

where λ_{i}^{1}, resp. $\left|v_{i}^{1}\right\rangle, i=1, \ldots, n_{1}$, are the nonzero eigenvalues, resp. eigenvectors, of the density matrix τ_{1}.

Let A_{i}^{1} denote the matrix with entries given by the coefficients of $\left|v_{i}^{1}\right\rangle$ in the bases $\left|f_{k}\right\rangle \otimes\left|h_{l}\right\rangle$. We have
$\rho_{i}^{1}=\operatorname{Tr}_{3}\left|v_{i}^{1}\right\rangle\left\langle v_{i}^{1}\right|=A_{i}^{1} A_{i}^{1^{\dagger}}, \quad \theta_{i}^{1}=\left(\operatorname{Tr}_{2}\left|v_{i}^{1}\right\rangle\left\langle v_{i}^{1}\right|\right)^{*}=A_{i}^{1^{\dagger}} A_{i}^{1}, \quad i=1, \ldots, n_{1}$.
Set

$$
\begin{array}{ll}
I_{\alpha}^{1}(|\Psi\rangle)=\operatorname{Tr}\left(\rho_{i}^{1}\right)^{\alpha}, & \alpha=1,2, \ldots, M \\
J_{\beta}^{1}(|\Psi\rangle)=\operatorname{Tr}\left(\theta_{i}^{1}\right)^{\beta}, & \beta=1,2, \ldots, N \\
K_{\gamma}^{1}(|\Psi\rangle)=\operatorname{Tr}\left(\tau_{1}^{\gamma}\right), & \gamma=1,2, \ldots, M N
\end{array}
$$

It is easy to prove that $I_{\alpha}^{1}(|\Psi\rangle), J_{\beta}^{1}(|\Psi\rangle)$ and $K_{\gamma}^{1}(|\Psi\rangle)$ are all invariants under local unitary transformations.

Let Γ_{1} denote a class of tripartite pure states $|\Psi\rangle$ satisfying

$$
\begin{equation*}
\left[\rho_{i}^{1}, \rho_{j}^{1}\right]=0, \quad\left[\theta_{i}^{1}, \theta_{j}^{1}\right]=0 \tag{2}
\end{equation*}
$$

with ρ_{i}^{1} being full rank matrices, $i, j=1,2, \ldots, n_{1}$.

Theorem 1. Two pure states in Γ_{1} are equivalent under local unitary transformations if and only if the following invariants ((c) or (d)) have the same values for both states:
(c) $I_{\alpha}^{1}(|\Psi\rangle)$,
$K_{\gamma}^{1}(|\Psi\rangle), \quad \alpha=1,2, \ldots, M$,
$\gamma=1,2, \ldots, M N$.
(d) $J_{\beta}^{1}(|\Psi\rangle)$
$K_{\gamma}^{1}(|\Psi\rangle), \quad \beta=1,2, \ldots, N$,
$\gamma=1,2, \ldots, M N$.

We only need to prove the sufficient part. Assume $|\Psi\rangle,\left|\Psi^{\prime}\right\rangle \in \Gamma_{1} . K_{\gamma}^{1}(|\Psi\rangle)=K_{\gamma}^{1}\left(\left|\Psi^{\prime}\right\rangle\right)$ imply that A_{1} and A_{1}^{\prime} have the same singular values, therefore there exist unitary matrices U_{1} and U_{23} such that $\left|\Psi^{\prime}\right\rangle=U_{1} \otimes U_{23}|\Psi\rangle$. If $I_{\alpha}^{1}(|\Psi\rangle)=I_{\alpha}^{1}\left(\left|\Psi^{\prime}\right\rangle\right)$ or $J_{\beta}^{1}(|\Psi\rangle)=J_{\beta}^{1}\left(\left|\Psi^{\prime}\right\rangle\right)$ holds, then τ_{1} and τ_{1}^{\prime} are equivalent under local unitary transformations by the sufficient condition of equivalence for bipartite states under local unitary transformations. While in [15] it has been proven that if $\left|\Psi^{\prime}\right\rangle=U_{1} \otimes U_{23}|\Psi\rangle$, with $U_{1} \in U\left(\mathcal{H}_{1}\right), U_{23} \in U\left(\mathcal{H}_{2} \otimes \mathcal{H}_{3}\right)$ and $\operatorname{Tr}_{1}\left(\left|\Psi^{\prime}\right\rangle\left\langle\Psi^{\prime}\right|\right)=U_{2} \otimes U_{3} \operatorname{Tr}_{1}(|\Psi\rangle\langle\Psi|) U_{2}^{\dagger} \otimes U_{3}^{\dagger}$, where $U_{2} \in U\left(\mathcal{H}_{2}\right)$ and $U_{3} \in U\left(\mathcal{H}_{3}\right)$, then there exist matrices $V_{1} \in U\left(\mathcal{H}_{1}\right), V_{2} \in U\left(\mathcal{H}_{2}\right), V_{3} \in U\left(\mathcal{H}_{3}\right)$ such that $\left|\Psi^{\prime}\right\rangle=V_{1} \otimes V_{2} \otimes V_{3}|\Psi\rangle$, i.e., $|\Psi\rangle$ and $\left|\Psi^{\prime}\right\rangle$ are equivalent under local unitary transformations.

Let us consider for example two states $|\Psi\rangle=\sqrt{\frac{p}{3}}(|000\rangle+|012\rangle+|021\rangle)+\sqrt{\frac{1-p}{3}}(|101\rangle+$ $|110\rangle+|122\rangle)$ and $\left|\Psi^{\prime}\right\rangle=\sqrt{\frac{p}{3}}(|000\rangle+|011\rangle+|022\rangle)+\sqrt{\frac{1-p}{3}}(|101\rangle+|112\rangle+|120\rangle)$ in $\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{3}$, for the case $K=2, M=N=3$. It is direct to verify that they are all states in Γ_{1} with $\rho_{i}^{1}=\theta_{i}^{1}=\frac{1}{3} I, i=1,2$. As τ_{1} and τ_{1}^{\prime} have the same eigenvalues, relation $K_{\gamma}^{1}(|\Psi\rangle)=K_{\gamma}^{1}\left(\left|\Psi^{\prime}\right\rangle\right)$ holds, from which and from the following equations

$$
\operatorname{Tr}\left(\rho_{i}^{1}\right)=\operatorname{Tr}\left(\rho_{i}^{\prime 1}\right)=1, \quad \operatorname{Tr}\left(\rho_{i}^{1}\right)^{2}=\operatorname{Tr}\left(\rho_{i}^{\prime 1}\right)^{2}=\frac{1}{3}
$$

by theorem 1 we have that $|\Psi\rangle$ and $\left|\Psi^{\prime}\right\rangle$ are equivalent under local unitary transformations. The same results can also be obtained from $K_{\gamma}^{1}(|\Psi\rangle)=K_{\gamma}^{1}\left(\left|\Psi^{\prime}\right\rangle\right)$ and the following facts:

$$
\operatorname{Tr}\left(\theta_{i}^{1}\right)=\operatorname{Tr}\left(\theta_{i}^{\prime 1}\right)=1, \quad \operatorname{Tr}\left(\theta_{i}^{1}\right)^{2}=\operatorname{Tr}\left(\theta_{i}^{\prime 1}\right)^{2}=\frac{1}{3}
$$

As an alternative example we consider two states $|\Psi\rangle=\sqrt{\frac{\alpha}{3}}(|000\rangle+|012\rangle+|021\rangle)+$ $\sqrt{\frac{\beta}{3}}(|101\rangle+|110\rangle+|122\rangle)+\sqrt{\frac{\gamma}{3}}(|202\rangle+|211\rangle+|220\rangle)$ and $\left|\Psi^{\prime}\right\rangle=\sqrt{\frac{\alpha}{3}}(|000\rangle+|011\rangle+$ $|022\rangle)+\sqrt{\frac{\beta}{3}}(|101\rangle+|112\rangle+|120\rangle)+\sqrt{\frac{\gamma}{3}}(|202\rangle+|210\rangle+|221\rangle)$ in $\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{3}$, with $K=M=N=3, \alpha, \beta, \gamma \in R, \alpha+\beta+\gamma=1$. One can prove that they are all states in Γ_{1} with $\rho_{i}^{1}=\theta_{i}^{1}=\frac{1}{3} I, i=1,2,3$, and $\tau_{1}, \tau_{1}^{\prime}$ have the same eigenvalues. As
$\operatorname{Tr}\left(\rho_{i}^{1}\right)=\operatorname{Tr}\left(\rho_{i}^{\prime 1}\right)=1, \quad \operatorname{Tr}\left(\rho_{i}^{1}\right)^{2}=\operatorname{Tr}\left(\rho_{i}^{\prime 1}\right)^{2}=\frac{1}{3}, \quad \operatorname{Tr}\left(\rho_{i}^{1}\right)^{3}=\operatorname{Tr}\left(\rho_{i}^{\prime 1}\right)^{3}=\frac{1}{9}$,
from theorem 1 we have that $|\Psi\rangle$ and $\left|\Psi^{\prime}\right\rangle$ are equivalent under local unitary transformations. Moreover by using the generalized concurrence [31], we have $C_{3}^{3} \neq 0$, hence $|\Psi\rangle$ and $\left|\Psi^{\prime}\right\rangle$ are entangled.

Remark. We can also similarly define the set of states Γ_{2}. Let τ_{2} be a reduced density matrix by tracing $|\Psi\rangle\langle\Psi|$ over the second system. τ_{2} can be decomposed according to its eigenvalues and eigenvectors:

$$
\tau_{2}=\sum_{i=1}^{n_{2}} \lambda_{i}^{2}\left|v_{i}^{2}\right\rangle\left\langle v_{i}^{2}\right|,
$$

where λ_{i}^{2}, resp. $\left|v_{i}^{2}\right\rangle, i=1, \ldots, n_{2}$, are the nonzero eigenvalues, resp. eigenvectors, of the density matrix τ_{2}. Define $\left\{\rho_{i}^{2}\right\},\left\{\theta_{i}^{2}\right\}$,

$$
\rho_{i}^{2}=\operatorname{Tr}_{3}\left|v_{i}^{2}\right\rangle\left\langle v_{i}^{2}\right|, \quad \theta_{i}^{2}=\left(\operatorname{Tr}_{1}\left|v_{i}^{2}\right\rangle\left\langle v_{i}^{2}\right|\right)^{*}, \quad i=1, \ldots, n_{2}
$$

We define Γ_{2} to be a set of tripartite pure states $|\Psi\rangle$ satisfying

$$
\begin{equation*}
\left[\rho_{i}^{2}, \rho_{j}^{2}\right]=0, \quad\left[\theta_{i}^{2}, \theta_{j}^{2}\right]=0 \tag{3}
\end{equation*}
$$

with ρ_{i}^{2} being full rank matrices. Then we also have the similar result.
Theorem 2. Two pure states in Γ_{2} are equivalent under local unitary transformations if and only if the following invariants $((e)$ or $(f))$ have the same values for both states:
(e) $\quad I_{\alpha}^{2}(|\Psi\rangle), \quad K_{\gamma}^{2}(|\Psi\rangle), \quad \alpha=1,2, \ldots, K, \quad \gamma=1,2, \ldots, K N$,
(f) $\quad J_{\beta}^{2}(|\Psi\rangle), \quad K_{\gamma}^{2}(|\Psi\rangle), \quad \beta=1,2, \ldots, N, \quad \gamma=1,2, \ldots, K N$,
where $I_{\alpha}^{2}(|\Psi\rangle)=\operatorname{Tr}\left(\rho_{i}^{2}\right)^{\alpha}, J_{\beta}^{2}(|\Psi\rangle)=\operatorname{Tr}\left(\theta_{i}^{2}\right)^{\beta}, K_{\gamma}^{2}(|\Psi\rangle)=\operatorname{Tr}\left(\tau_{2}^{\gamma}\right)$.
The set of states Γ_{3} can be defined in a similar way and the corresponding theorem (like theorems 1 and 2) can be obtained similarly.

The above results can be generalized to general many partite systems. As each n partite pure states can be treated as a bipartite one, the j th system and rest $n-1$ partite system, by using the results of lemma 2 in [15], one can similarly obtain a complete set of invariants for some classes of multipartite pure states.

3. Tripartite quantum mixed states

We consider now mixed states in $\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{3}$. We assume $K \leqslant M$, N. Let ρ be a density matrix defined on $\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{3}$ with $r(\rho)=n \leqslant K^{3} . \rho$ can be decomposed according to its eigenvalues and eigenvectors:

$$
\rho=\sum_{i=1}^{n} \lambda_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right|,
$$

where λ_{i}, resp. $\left|v_{i}\right\rangle, i=1, \ldots, n$, are the nonzero eigenvalues, resp. eigenvectors, of the density matrix ρ. We introduce

$$
\rho_{i}=\operatorname{Tr}_{1}\left|v_{i}\right\rangle\left\langle v_{i}\right|, \quad \theta_{i}=\operatorname{Tr}_{2}\left|v_{i}\right\rangle\left\langle v_{i}\right|, \quad \gamma_{i}=\operatorname{Tr}_{3}\left|v_{i}\right\rangle\left\langle v_{i}\right|
$$

If we treat $\left|\nu_{i}\right\rangle$ as a bipartite state $\left|\omega_{i}\right\rangle$ in $1-23$ system, let $A_{1 i}$ denote the matrix with entries given by the coefficients of $\left|\omega_{i}\right\rangle$ in the bases $\left|e_{k}\right\rangle \otimes\left|g_{l}\right\rangle$, where $\left|g_{l}\right\rangle=\left|f_{t}\right\rangle \otimes\left|h_{s}\right\rangle, l=t s$; $t=1, \ldots, M, s=1, \ldots, N$. According to the result of bipartite system, we have

$$
\operatorname{Tr}_{2}\left|\omega_{i}\right\rangle\left\langle\omega_{i}\right|=A_{1 i} A_{1 i}^{\dagger}, \quad\left(\operatorname{Tr}_{1}\left|\omega_{i}\right\rangle\left\langle\omega_{i}\right|\right)^{*}=A_{1 i}^{\dagger} A_{1 i}, \quad i=1, \ldots, n
$$

As $\operatorname{Tr}_{2}\left|\omega_{i}\right\rangle\left\langle\omega_{i}\right|=\operatorname{Tr}_{3}\left(\operatorname{Tr}_{2}\left|v_{i}\right\rangle\left\langle v_{i}\right|\right)$ and $\operatorname{Tr}_{1}\left|\omega_{i}\right\rangle\left\langle\omega_{i}\right|=\operatorname{Tr}_{1}\left|v_{i}\right\rangle\left\langle v_{i}\right|$, we have

$$
\theta_{i}^{23}=A_{1 i} A_{1 i}^{\dagger}, \quad \rho_{i}=\left(A_{1 i}^{\dagger} A_{1 i}\right)^{*}
$$

where $\theta_{i}^{23}=\operatorname{Tr}_{3}\left(\operatorname{Tr}_{2}\left|v_{i}\right\rangle\left\langle v_{i}\right|\right)$.
ρ_{i} can be again decomposed according to its eigenvalues and eigenvectors:

$$
\rho_{i}=\sum_{j=1}^{m_{i}} \alpha_{j}^{i}\left|\mu_{j}^{i}\right\rangle\left\langle\mu_{j}^{i}\right|
$$

where α_{j}^{i}, resp. $\left|\mu_{j}^{i}\right\rangle, j=1, \ldots, m_{i}$, are the nonzero eigenvalues, resp. eigenvectors, of the reduced density matrix ρ_{i}. Let B_{j}^{i} denote the matrix with entries given by coefficients of $\left|\mu_{j}^{i}\right\rangle$ in the bases $\left|f_{k}\right\rangle \otimes\left|h_{l}\right\rangle$. We further introduce $\left\{\xi_{j}^{i}\right\},\left\{\eta_{j}^{i}\right\}$,
$\xi_{j}^{i}=\operatorname{Tr}_{3}\left|\mu_{j}^{i}\right\rangle\left\langle\mu_{j}^{i}\right|=B_{j}^{i} B_{j}^{i \dagger}, \quad \eta_{j}^{i}=\left(\operatorname{Tr}_{2}\left|\mu_{j}^{i}\right\rangle\left\langle\mu_{j}^{i}\right|\right)^{*}=B_{j}^{i \dagger} B_{j}^{i}, \quad j=1, \ldots, m_{i}$.

Let Γ denote a class of tripartite mixed states satisfying

$$
\begin{equation*}
\left[\rho_{i}, \rho_{k}\right]=0, \quad\left[\theta_{i}^{23}, \theta_{k}^{23}\right]=0 \tag{4}
\end{equation*}
$$

with θ_{i}^{23} being full rank matrices, $i, k=1,2, \ldots, n$, and

$$
\begin{equation*}
\left[\xi_{t}^{i}, \xi_{l}^{k}\right]=0, \quad\left[\eta_{t}^{i}, \eta_{l}^{k}\right]=0 \tag{5}
\end{equation*}
$$

with ξ_{t}^{i} being full rank matrices, $\forall i, k=1,2, \ldots, n, t=1,2, \ldots, m_{i}, l=1,2, \ldots, m_{k}$.
Theorem 3. Two mixed states in Γ are equivalent under local unitary transformations if and only if the following invariants $((g)$ or $(h))$ have the same values for both mixed states:
(g) $\quad \operatorname{Tr}\left(\rho_{i}\right)^{\alpha}, \quad \operatorname{Tr}\left(\xi_{l}^{k}\right)^{\alpha}, \quad \operatorname{Tr}\left(\rho^{\gamma}\right), \quad \alpha=1,2, \ldots, M, \quad \gamma=1,2, \ldots, M N$.
(h) $\operatorname{Tr}\left(\theta_{i}^{23}\right)^{\beta}, \quad \operatorname{Tr}\left(\eta_{l}^{k}\right)^{\beta}, \quad \operatorname{Tr}\left(\rho^{\gamma}\right), \quad \beta=1,2, \ldots, N, \quad \gamma=1,2, \ldots, M N$.

Proof. If ρ and $\rho^{\prime} \in \Gamma$ are equivalent under the local unitary transformation $u \otimes v \otimes w, \rho^{\prime}=$ $u \otimes v \otimes w \rho u^{\dagger} \otimes v^{\dagger} \otimes w^{\dagger}$, then $\left|v_{i}^{\prime}\right\rangle=u \otimes V\left|v_{i}\right\rangle$, where $V=v \otimes w$, namely $A_{1 i}$ is mapped to $A_{1 i}^{\prime}=u A_{1 i} V^{t}$. Therefore,

$$
\begin{aligned}
& \theta_{i}^{\prime 23}=A_{1 i}^{\prime} A_{1 i}^{\prime \dagger}=u A_{1 i} A_{1 i}^{\dagger} u^{\dagger}=u \theta_{i}^{23} u^{\dagger} \\
& \rho_{i}^{\prime}=\left(A_{1 i}^{\prime \dagger} A_{1 i}^{\prime}\right)^{*}=V\left(A_{1 i}^{\dagger} A_{1 i}\right)^{*} V^{\dagger}=V \rho_{i} V^{\dagger}=v \otimes w \rho_{i} v^{\dagger} \otimes w^{\dagger}
\end{aligned}
$$

Thus ρ_{i} and ρ_{i}^{\prime} are equivalent under the local unitary transformation $v \otimes w$; from the results of bipartite system [26] we have $\operatorname{Tr}\left(\xi_{l}^{k}\right)^{\alpha}=\operatorname{Tr}\left(\xi_{l}^{\prime k}\right)^{\alpha}$ and $\operatorname{Tr}\left(\eta_{l}^{k}\right)^{\beta}=\operatorname{Tr}\left(\eta_{l}^{\prime k}\right)^{\beta}$. Therefore (g) and (h) hold.

Conversely, $\operatorname{Tr}\left(\rho^{\gamma}\right)=\operatorname{Tr}\left(\rho^{\prime \gamma}\right)$ imply that ρ and ρ^{\prime} have the same eigenvalues. We now prove that there exist common unitary matrices V_{1}, V_{2}, V_{3} such that $\left|v_{i}^{\prime}\right\rangle=V_{1} \otimes V_{2} \otimes V_{3}\left|v_{i}\right\rangle$ by using lemma 2 in [15].

From the relation $\operatorname{Tr}\left(\rho_{i}\right)^{\alpha}=\operatorname{Tr}\left(\rho_{i}^{\prime}\right)^{\alpha}$ in (g) and condition (4), we have common unitary matrices U_{1} and U_{23} for all i such that $\left|v_{i}^{\prime}\right\rangle=U_{1} \otimes U_{23}\left|v_{i}\right\rangle$.

The relation $\operatorname{Tr}\left(\xi_{l}^{k}\right)^{\alpha}=\operatorname{Tr}\left(\xi_{l}^{\prime k}\right)^{\alpha}$ in (g) and condition (5) imply that ρ_{i} and ρ_{i}^{\prime} are equivalent under local unitary transformations, $\rho_{i}^{\prime}=U_{i} \otimes V_{i} \rho_{i} U_{i}^{\dagger} \otimes V_{i}^{\dagger}$, according to the results of bipartite system [26]. For the case $i \neq k$ in condition (5), (5) implies that there exist common unitary matrices U and V such that $\rho_{i}^{\prime}=U \otimes V \rho_{i} U^{\dagger} \otimes V^{\dagger}$. To elucidate this we just show the case $n=2$. For a rank-two state ρ we have

$$
\rho_{1}=\sum_{j=1}^{m_{1}} \alpha_{j}^{1}\left|\mu_{j}^{1}\right\rangle\left\langle\mu_{j}^{1}\right|, \quad \rho_{2}=\sum_{j=1}^{m_{2}} \alpha_{j}^{2}\left|\mu_{j}^{2}\right\rangle\left\langle\mu_{j}^{2}\right|
$$

$\operatorname{Tr}\left(\xi_{j}^{1}\right)^{\alpha}=\operatorname{Tr}\left(\xi^{\prime 1}\right)^{\alpha}$ implies that ξ_{j}^{1} and $\xi^{\prime 1}{ }_{j}$ are equivalent under unitary transformations. Therefore B_{j}^{1} and $B^{\prime 1}{ }_{j}$ have the same singular values. Equations

$$
\begin{equation*}
\left[\xi_{t}^{1}, \xi_{l}^{1}\right]=0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\eta_{t}^{1}, \eta_{l}^{1}\right]=0 \tag{7}
\end{equation*}
$$

imply that (from singular value decomposition) there exist common unitary matrices U_{1}, U_{1}^{\prime} and V_{1}, V_{1}^{\prime} such that

$$
\begin{equation*}
U_{1} B_{j}^{1} V_{1}=U_{1}^{\prime} B_{j}^{\prime 1} V_{1}^{\prime} \tag{8}
\end{equation*}
$$

While

$$
\begin{equation*}
\left[\xi_{t}^{2}, \xi_{l}^{2}\right]=0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\eta_{t}^{2}, \eta_{l}^{2}\right]=0 \tag{10}
\end{equation*}
$$

imply that there exist common unitary matrices U_{2}, U_{2}^{\prime} and V_{2}, V_{2}^{\prime} such that

$$
\begin{equation*}
U_{2} B_{j}^{2} V_{2}=U_{2}^{\prime} B_{j}^{\prime 2} V_{2}^{\prime} \tag{11}
\end{equation*}
$$

From (6) and (9), we have $U_{1}=U_{2}$. From (7) and (10), we have $V_{1}=V_{2}$. Hence $B_{j}^{\prime i}=U B_{j}^{i} V^{t}$ and $\left|\mu^{\prime i}{ }_{j}\right\rangle=U \otimes V\left|\mu_{j}^{i}\right\rangle, j=1, \ldots, m_{i}$. Therefore, $\rho_{i}^{\prime}=U \otimes V \rho_{i} U^{\dagger} \otimes V^{\dagger}$. Hence ρ_{i}^{\prime} and ρ_{i} are equivalent under local unitary transformations.

Therefore, from lemma 2 in [15] we have that tripartite states $\left|v_{i}\right\rangle$ and $\left|v_{i}^{\prime}\right\rangle$ are equivalent under local unitary transformations. In fact, there exist common unitary matrices $V_{i}, i=1,2,3$, such that $\left|v_{i}^{\prime}\right\rangle=V_{1} \otimes V_{2} \otimes V_{3}\left|v_{i}\right\rangle$, where $V_{1}=W U_{1}, V_{2}=U, V_{3}=V$ $\left(\left[\theta_{i}^{23}, \theta_{j}^{23}\right]=0\right)$ imply that there exists common W for different $\left.v_{i}\right)$. Therefore, we have $\rho^{\prime}=V_{1} \otimes V_{2} \otimes V_{3} \rho V_{1}^{\dagger} \otimes V_{2}^{\dagger} \otimes V_{3}^{\dagger}$.

Thus from (g) we get that ρ and ρ^{\prime} are equivalent under local unitary transformations. One can similarly prove that ρ and ρ^{\prime} are equivalent under local unitary transformations from (h).

We have discussed the local invariants for arbitrary dimensional tripartite quantum mixed states in $\mathbb{C}^{K} \otimes \mathbb{C}^{M} \otimes \mathbb{C}^{N}$ composite systems and have presented sets of invariants under local unitary transformations for some classes of tripartite mixed states. The invariants in a set are not necessarily independent, but they are sufficient to judge if two states in Γ or $\Gamma_{i}, i=1,2,3$, are equivalent under local unitary transformations. For three qubit case, $K=M=N=2$, a set of invariants has been presented in $[10,11]$ for a special class of states. By using the method in $[14,15]$, the results can be generalized to detect local equivalence for some special classes of general multipartite states.

Acknowledgments

The work is supported by Beijing Municipal Education Commission (Nos KM 200510028021, KM200510028022), NKBRPC (2004CB318000), NSFC Project 10675086, and Beijing Training of Excellent Researches 005400705 . X H Wang gratefully acknowledges S Albeverio for continuous encouragement and L Cattaneo for valuable discussion.

References

[1] Nielsen M and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Vollbrecht K G H and Werner R F 2001 Phys. Rev. A 64062307
[3] Sudbery A 2001 J. Phys. A: Math. Gen. 34643
[4] Barnum H and Linden N 2001 J. Phys. A: Math. Gen. 346787
[5] Rains E M 2000 IEEE Trans. Inf. Theory 4654
[6] Grassl M, Rötteler M and Beth T 1998 Phys. Rev. A 581833
[7] Van den Nest M, Dehaene J and De Moor B 2004 Phys. Rev. A 70032323
[8] Aschauer H, Calsamiglia J, Hein M and Briegel H J 2004 Quantum Inform. Comput. 4383
[9] Makhlin Y 2002 Quantum Inform. Proc. 1243
[10] Linden N, Popescu S and Sudbery A 1999 Phys. Rev. Lett. 83243
[11] Sun B Z and Fei S M 2006 Commun. Theor. Phys. 451007
[12] Briand E, Luque J G, Thibon J Y and Verstraete F 2004 J. Math. Phys. 454885
[13] Albeverio S, Fei S M, Parashar P and Yang W L 2003 Phys. Rev. A 68010303
[14] Albeverio S, Cattaneo L, Fei S M and Wang X H 2005 Int. J. Quantum Infom. 3603
[15] Albeverio S, Cattaneo L, Fei S M and Wang X H 2005 Rep. Math. Phys. 56341 Albeverio S, Cattaneo L, Fei S M and Wang X H 2006 Rep. Math. Phys. 58223
[16] Wang X H 2006 Commun. Theor. Phys. 45262
[17] Carteret H A, Higuchi A and Sudbery A 2000 J. Math. Phys. 417932
[18] Acin A, Andrianov A, Costa L, Jane E, Latorre J I and Tarrach R 2000 Phys. Rev. Lett. 851560
[19] Peres A 1995 Phys. Lett. A 20216
[20] Acin A, Bruss D, Lewenstein M and Sanpera A 2001 Phys. Rev. Lett. 87040401
[21] Thapliyal A V 1999 Phys. Rev. A 593336
[22] Luque J G and Thibon J Y 2003 Phys. Rev. A 67042303 Luque J G and Thibon J Y 2007 J. Phys. A: Math. Gen. 39371
[23] Levay P 2006 J. Phys. A: Math. Gen. 399533 (Preprint quant-ph/0403060)
[24] Miyake A 2003 Phys. Rev. A 67012108
Miyake A and Wadati M 2002 Quantum Inform. Comput. 2540
Miyake A and Frank V 2004 Phys. Rev. A 69012101
[25] Lamata L, Leon J, Salgado D and Solano E 2006 Phys. Rev. A 74052336
Lamata L, Leon J, Salgado D and Solano E 2007 Phys. Rev. A 75022318
[26] Wang X H, Albeverio S, Cattaneo L and Fei S M Proc. Foundations of Probability and Physics-4 (Vaxjo, Sweden, 4-9 June 2006) ed G Adenier, C A Fuchs and A Yu Khrennikov pp 294-8
[27] Virmani S, Sacchi M F, Plenio M B and Markham D 2001 Phys. Lett. A 28862
[28] Rains E M 1999 Phys. Rev. A 60179
[29] Khasin M and Kosloff R 2006 (Preprint quant-ph/0605140)
[30] Khasin M, Kosloff R and Steinitz D 2007 Phys. Rev. A 75052325
[31] Fei S M, Gao X H, Wang X H, Wang Z X and Wu K 2002 Phys. Lett. A 300559

