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Abstract
We study the equivalence of quantum states under local unitary transformations
by using the singular value decomposition. A complete set of invariants under
local unitary transformations is presented for several classes of tripartite mixed
states in C

K ⊗C
M ⊗C

N composite systems. Two density matrices in the same
class are equivalent under local unitary transformations if and only if all these
invariants have equal values for these density matrices.

PACS numbers: 03.67.−a, 02.20.Hj, 03.65.−w

1. Introduction

Quantum entanglement is playing a very important role in quantum information processing.
Quantum entangled states are the key resource in quantum information processing [1] such
as teleportation, super-dense coding, key distribution, error correction and quantum repeaters.
Therefore, it is of great importance to classify and characterize the quantum states.

The nature of the entanglement among the parts of a composite system does not depend
on the labeling of the basis states of the individual subsystems. It is therefore invariant under
unitary transformations of the individual state spaces. Such transformations are referred to
as local unitary transformations. The polynomial invariants of local unitary transformations
have been discussed in [2–4]. General methods, which allow us in principle to compute all
such invariants, but are in fact not really operational, were introduced in [5–8]. More explicit
complete and partial solutions have been found for some special cases: two qubit [9] and three
qubit [10, 11] systems, three qutrits [12], generic mixed states [13] and special families of
tripartite pure qudits [14–16].

The problem of classifying states under local unitary transformations can be solved
completely for bipartite pure states. As the set of Schmidt coefficients forms a complete set of
invariants under local unitary transformations, two bipartite pure states are equivalent under
local unitary transformations if and only if they have the same Schmidt coefficients. For a
multiple composite system, there does not exist Schmidt decomposition in general. There
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are different generalizations for Schmidt decomposition in multipartite quantum pure states
[17–21], but the results are not sufficient to solve the local equivalence problem. For
multipartite mixed states, much less is known about the equivalence under local unitary
transformations.

Another classification of quantum states is the one under stochastic local operations and
classical communications (SLOCC). Invariants under SLOCC have also been extensively
studied [22–24]. Recently, Lamata et al [25] used the method of singular value decomposition
and presented an inductive classification of multipartite qubit systems under SLOCC.

In this paper, we study the equivalence of multipartite mixed states under local unitary
transformations by using the singular value decomposition. Let H1 (resp.H2) be M (resp. N)
dimensional complex Hilbert spaces (M � N). A mixed state ρ in H1 ⊗ H2 with rank
r(ρ) = n � M2 can be decomposed according to its eigenvalues λi and eigenvectors
|νi〉, i = 1, . . . , n:

ρ =
n∑

i=1

λi |νi〉〈νi |.

In [26], a class of bipartite mixed states �0 has been defined; �0 contains all the states ρ

in H1 ⊗ H2 satisfying

[ρi, ρj ] = 0, [θi, θj ] = 0, i, j = 1, 2, . . . , n, (1)

where ρi are full rank matrices,

ρi = Tr2|νi〉〈νi |, θi = (Tr1|νi〉〈νi |)∗, i = 1, . . . , n,

and Tr1 (resp. Tr2) denotes the partial trace over H1 (resp.H2). We denote by †, ∗ and t the
adjoint, complex conjugation and transposition, respectively.

It has been shown that two mixed states in �0 are equivalent under local unitary
transformations if and only if the following invariants ((a) or (b)) have the same values
for both mixed states [26]:

(a) Tr
(
ρα

i

)
, Tr(ργ ), α = 1, 2, . . . , M, γ = 1, 2, . . . , MN.

(b) Tr(θβ

i ), Tr(ργ ), β = 1, 2, . . . , N, γ = 1, 2, . . . , MN.

The set of such states in �0 is not trivial. In fact, �0 is a subset of the Schmidt-correlated
(SC) states [27]. The SC states are defined as mixtures of pure states, sharing the same
Schmidt bases. It first appeared in [28], named as maximally correlated state. For SC states,
for any classical measurement, two observers Alice and Bob will always obtain the same
result. Two SC states can always be optimally discriminated locally. It is interesting that
maximally entangled states (Bell state) can always be expressed in Schmidt-correlated form.
SC states naturally appear in a bipartite system dynamics with additive integrals of motion
[29]. Hence, these states form an important class of mixed states from a quantum dynamical
perspective. From the definition of SC state, we know that the states in �0 are all SC states.
Therefore, we can judge whether a state in �0 is separable or not by calculating the negativity
of this state [30].

Here we give a simple way to construct some families of states in �0. For M = N = 4,
one can set |ψ1〉 = (|00〉 + |12〉 + |21〉 + |33〉)/2 and |ψ2〉 = (|01〉 + |10〉 + |23〉 + |32〉)/2,
where |ij 〉, i = 0, 1, . . . , M − 1, j = 0, 1, . . . , N − 1, are the basis of H1 ⊗ H2. Then
ρ = α|ψ1〉〈ψ1| + (1 − α)|ψ2〉〈ψ2| is a rank-two state belonging to �0 for 0 < α < 1.
For general even M = N = d + 1, a state ρ = α|ψ1〉〈ψ1| + (1 − α)|ψ2〉〈ψ2| is
in �0, where |ψ1〉 = (|00〉 + |12〉 + |21〉 + |34〉 + |43〉 + · · · + |dd〉)/√M and |ψ2〉 =
(|01〉 + |10〉 + |23〉 + |32〉 + · · · + |d − 1, d〉 + |d, d − 1〉)/√M .
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For M = N = 5, one can set |φ1〉 = (|00〉 + |12〉 + |21〉 + |34〉 + |43〉)/√5 and
|φ2〉 = (|01〉 + |10〉 + |23〉 + |32〉 + |44〉)/√5. Then ρ = α|φ1〉〈φ1| + (1 − α)|φ2〉〈φ2| is
a rank-two state in �0. For general odd M = N, |φ1〉 and |φ2〉 can be similarly constructed.

We can also construct higher rank states in �0. For example, for M = N = 4, by
adding |ψ3〉 = (|11〉 + |02〉 + |20〉 + |33〉)/2, we have that ρ = α|ψ1〉〈ψ1| + β|ψ2〉〈ψ2| +
(1 − α − β)|ψ3〉〈ψ3| is a state in �0. For odd M = N = 5, we have |φ3〉 =
(|04〉+ |13〉+ |22〉+ |31〉+ |40〉)/√5 and ρ = α|φ1〉〈φ1|+β|φ2〉〈φ2|+(1−α−β)|φ3〉〈φ3| ∈ �0.

The states constructed above are all distillable. The rank of reduced density matrices,
which are in fact identity matrices, are greater than the rank of ρ itself. They are all NPPT
(non-positive partial transpose) entangled states.

2. Tripartite quantum pure states

We first discuss the locally invariant properties of arbitrary dimensional tripartite pure quantum
states. Let H1,H2 and H3 be K-, M- and N-dimensional complex Hilbert spaces with the
orthonormal bases {|ei〉}Ki=1 , {|fi〉}Mi=1 and {|hi〉}Ni=1, respectively.

|�〉 can be regarded as a bipartite state by taking H1 (resp.H2,H3) and H2 ⊗ H3

(resp.H1 ⊗ H3,H1 ⊗ H2) as the two subsystems. We denote these three bipartite
decompositions as 1–23 (resp. 2–13, 3–12). Let aijk be the coefficients of |�〉 in orthonormal
bases |ei〉 ⊗ |fj 〉 ⊗ |hk〉. Let A1 (resp. A2, A3) denote the matrix with respect to the bipartite
state in 1–23 (resp. 2–13, 3–12) decomposition, i.e. taking the subindices i (resp. j, k) and jk

(resp. ik, ij ) of aijk as the row and column indices of A1 (resp. A2, A3).
Taking partial trace of |�〉〈�| over the respective subsystems, we have τ1 = Tr1|�〉〈�| =

At
1A

∗
1, τ2 = Tr2|�〉〈�| = At

2A
∗
2 and τ3 = Tr3|�〉〈�| = At

3A
∗
3. The reduced matrices τ1, τ2

and τ3 can be decomposed according to their eigenvalues and eigenvectors, e.g.,

τ1 =
n1∑

i=1

λ1
i

∣∣ν1
i

〉 〈
ν1

i

∣∣,

where λ1
i , resp.

∣∣ν1
i

〉
, i = 1, . . . , n1, are the nonzero eigenvalues, resp. eigenvectors, of the

density matrix τ1.
Let A1

i denote the matrix with entries given by the coefficients of
∣∣ν1

i

〉
in the bases

|fk〉 ⊗ |hl〉. We have

ρ1
i = Tr3

∣∣ν1
i

〉 〈
ν1

i

∣∣ = A1
i A

1
i

†
, θ1

i = (
Tr2

∣∣ν1
i

〉 〈
ν1

i

∣∣)∗ = A1
i

†
A1

i , i = 1, . . . , n1.

Set

I 1
α (|�〉) = Tr

(
ρ1

i

)α
, α = 1, 2, . . . , M,

J 1
β (|�〉) = Tr

(
θ1
i

)β
, β = 1, 2, . . . , N,

K1
γ (|�〉) = Tr

(
τ

γ

1

)
, γ = 1, 2, . . . , MN.

It is easy to prove that I 1
α (|�〉), J 1

β (|�〉) and K1
γ (|�〉) are all invariants under local unitary

transformations.
Let �1 denote a class of tripartite pure states |�〉 satisfying

[
ρ1

i , ρ
1
j

] = 0,
[
θ1
i , θ1

j

] = 0 (2)

with ρ1
i being full rank matrices, i, j = 1, 2, . . . , n1.

3
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Theorem 1. Two pure states in �1 are equivalent under local unitary transformations if and
only if the following invariants ((c) or (d)) have the same values for both states:

(c) I 1
α (|�〉), K1

γ (|�〉), α = 1, 2, . . . ,M, γ = 1, 2, . . . , MN.

(d) J 1
β (|�〉), K1

γ (|�〉), β = 1, 2, . . . , N, γ = 1, 2, . . . , MN.

We only need to prove the sufficient part. Assume |�〉, |� ′〉 ∈ �1. K1
γ (|�〉) = K1

γ (|� ′〉)
imply that A1 and A′

1 have the same singular values, therefore there exist unitary matrices
U1 and U23 such that |� ′〉 = U1 ⊗ U23|�〉. If I 1

α (|�〉) = I 1
α (|� ′〉) or J 1

β (|�〉) = J 1
β (|� ′〉)

holds, then τ1 and τ ′
1 are equivalent under local unitary transformations by the sufficient

condition of equivalence for bipartite states under local unitary transformations. While in
[15] it has been proven that if |� ′〉 = U1 ⊗U23|�〉, with U1 ∈ U(H1), U23 ∈ U(H2 ⊗H3) and
Tr1(|� ′〉〈� ′|) = U2 ⊗ U3Tr1(|�〉〈�|)U †

2 ⊗ U
†
3 , where U2 ∈ U(H2) and U3 ∈ U(H3), then

there exist matrices V1 ∈ U(H1), V2 ∈ U(H2), V3 ∈ U(H3) such that |� ′〉 = V1⊗V2⊗V3|�〉,
i.e., |�〉 and |� ′〉 are equivalent under local unitary transformations.

Let us consider for example two states |�〉 =
√

p

3 (|000〉 + |012〉 + |021〉) +
√

1−p

3 (|101〉 +

|110〉 + |122〉) and |� ′〉 =
√

p

3 (|000〉 + |011〉 + |022〉) +
√

1−p

3 (|101〉 + |112〉 + |120〉) in

H1 ⊗ H2 ⊗ H3, for the case K = 2,M = N = 3. It is direct to verify that they are all
states in �1 with ρ1

i = θ1
i = 1

3I, i = 1, 2. As τ1 and τ ′
1 have the same eigenvalues, relation

K1
γ (|�〉) = K1

γ (|� ′〉) holds, from which and from the following equations

Tr
(
ρ1

i

) = Tr
(
ρ ′

i

1) = 1, Tr
(
ρ1

i

)2 = Tr
(
ρ ′

i

1)2 = 1
3 ,

by theorem 1 we have that |�〉 and |� ′〉 are equivalent under local unitary transformations.
The same results can also be obtained from K1

γ (|�〉) = K1
γ (|� ′〉) and the following facts:

Tr
(
θ1
i

) = Tr
(
θ ′
i

1) = 1, Tr
(
θ1
i

)2 = Tr
(
θ ′
i

1)2 = 1
3 .

As an alternative example we consider two states |�〉 = √
α
3 (|000〉 + |012〉 + |021〉) +√

β

3 (|101〉 + |110〉 + |122〉) +
√

γ

3 (|202〉 + |211〉 + |220〉) and |� ′〉 = √
α
3 (|000〉 + |011〉 +

|022〉) +
√

β

3 (|101〉 + |112〉 + |120〉) +
√

γ

3 (|202〉 + |210〉 + |221〉) inH1 ⊗ H2 ⊗ H3, with

K = M = N = 3, α, β, γ ∈ R, α + β + γ = 1. One can prove that they are all states in �1

with ρ1
i = θ1

i = 1
3I, i = 1, 2, 3, and τ1, τ

′
1 have the same eigenvalues. As

Tr
(
ρ1

i

) = Tr
(
ρ ′

i

1) = 1, Tr
(
ρ1

i

)2 = Tr
(
ρ ′

i

1)2 = 1
3 , Tr

(
ρ1

i

)3 = Tr
(
ρ ′

i

1)3 = 1
9 ,

from theorem 1 we have that |�〉 and |� ′〉 are equivalent under local unitary transformations.
Moreover by using the generalized concurrence [31], we have C3

3 �= 0, hence |�〉 and |� ′〉
are entangled.

Remark. We can also similarly define the set of states �2. Let τ2 be a reduced density matrix
by tracing |�〉〈�| over the second system. τ2 can be decomposed according to its eigenvalues
and eigenvectors:

τ2 =
n2∑

i=1

λ2
i

∣∣ν2
i

〉 〈
ν2

i

∣∣,

where λ2
i , resp.

∣∣ν2
i

〉
, i = 1, . . . , n2, are the nonzero eigenvalues, resp. eigenvectors, of the

density matrix τ2. Define
{
ρ2

i

}
,
{
θ2
i

}
,

ρ2
i = Tr3

∣∣ν2
i

〉 〈
ν2

i

∣∣, θ2
i = (

Tr1

∣∣ν2
i

〉 〈
ν2

i

∣∣)∗
, i = 1, . . . , n2.

4
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We define �2 to be a set of tripartite pure states |�〉 satisfying[
ρ2

i , ρ
2
j

] = 0,
[
θ2
i , θ2

j

] = 0 (3)

with ρ2
i being full rank matrices. Then we also have the similar result.

Theorem 2. Two pure states in �2 are equivalent under local unitary transformations if and
only if the following invariants ((e) or (f)) have the same values for both states:

(e) I 2
α (|�〉), K2

γ (|�〉), α = 1, 2, . . . , K, γ = 1, 2, . . . , KN,

(f ) J 2
β (|�〉), K2

γ (|�〉), β = 1, 2, . . . , N, γ = 1, 2, . . . , KN,

where I 2
α (|�〉) = Tr

(
ρ2

i

)α
, J 2

β (|�〉) = Tr
(
θ2
i

)β
,K2

γ (|�〉) = Tr
(
τ

γ

2

)
.

The set of states �3 can be defined in a similar way and the corresponding theorem (like
theorems 1 and 2) can be obtained similarly.

The above results can be generalized to general many partite systems. As each n partite
pure states can be treated as a bipartite one, the j th system and rest n − 1 partite system, by
using the results of lemma 2 in [15], one can similarly obtain a complete set of invariants for
some classes of multipartite pure states.

3. Tripartite quantum mixed states

We consider now mixed states in H1 ⊗ H2 ⊗ H3. We assume K � M,N . Let ρ be a density
matrix defined on H1 ⊗ H2 ⊗ H3 with r(ρ) = n � K3. ρ can be decomposed according to
its eigenvalues and eigenvectors:

ρ =
n∑

i=1

λi |νi〉〈νi |,

where λi , resp. |νi〉, i = 1, . . . , n, are the nonzero eigenvalues, resp. eigenvectors, of the
density matrix ρ. We introduce

ρi = Tr1|νi〉〈νi |, θi = Tr2|νi〉〈νi |, γi = Tr3|νi〉〈νi |.
If we treat |νi〉 as a bipartite state |ωi〉 in 1 − 23 system, let A1i denote the matrix with

entries given by the coefficients of |ωi〉 in the bases |ek〉⊗|gl〉, where |gl〉 = |ft 〉⊗|hs〉, l = ts;
t = 1, . . . ,M, s = 1, . . . , N. According to the result of bipartite system, we have

Tr2|ωi〉〈ωi | = A1iA
†
1i , (Tr1|ωi〉〈ωi |)∗ = A

†
1iA1i , i = 1, . . . , n.

As Tr2|ωi〉〈ωi | = Tr3(Tr2|νi〉〈νi |) and Tr1|ωi〉〈ωi | = Tr1|νi〉〈νi |, we have

θ23
i = A1iA

†
1i , ρi = (

A
†
1iA1i

)∗
,

where θ23
i = Tr3(Tr2|νi〉〈νi |).

ρi can be again decomposed according to its eigenvalues and eigenvectors:

ρi =
mi∑

j=1

αi
j

∣∣µi
j

〉 〈
µi

j

∣∣,

where αi
j , resp.

∣∣µi
j

〉
, j = 1, . . . , mi , are the nonzero eigenvalues, resp. eigenvectors, of the

reduced density matrix ρi . Let Bi
j denote the matrix with entries given by coefficients of

∣∣µi
j

〉
in the bases |fk〉 ⊗ |hl〉. We further introduce

{
ξ i
j

}
,
{
ηi

j

}
,

ξ i
j = Tr3

∣∣µi
j

〉 〈
µi

j

∣∣ = Bi
jB

i
j

†
, ηi

j = (
Tr2

∣∣µi
j

〉 〈
µi

j

∣∣)∗ = Bi
j

†
Bi

j , j = 1, . . . , mi.

5
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Let � denote a class of tripartite mixed states satisfying
[
ρi, ρk

] = 0,
[
θ23
i , θ23

k

] = 0 (4)

with θ23
i being full rank matrices, i, k = 1, 2, . . . , n, and

[
ξ i
t , ξ

k
l

] = 0,
[
ηi

t , η
k
l

] = 0 (5)

with ξ i
t being full rank matrices, ∀i, k = 1, 2, . . . , n, t = 1, 2, . . . , mi, l = 1, 2, . . . , mk.

Theorem 3. Two mixed states in � are equivalent under local unitary transformations if and
only if the following invariants ((g) or (h)) have the same values for both mixed states:

(g) Tr(ρi)
α, Tr

(
ξk
l

)α
, Tr(ργ ), α = 1, 2, . . . , M, γ = 1, 2, . . . , MN.

(h) Tr(θ23
i )β, Tr

(
ηk

l

)β
, Tr(ργ ), β = 1, 2, . . . , N, γ = 1, 2, . . . , MN.

Proof. If ρ and ρ ′ ∈ � are equivalent under the local unitary transformation u ⊗ v ⊗ w, ρ ′ =
u ⊗ v ⊗ wρu† ⊗ v† ⊗ w†, then |ν ′

i〉 = u ⊗ V |νi〉, where V = v ⊗ w, namely A1i is mapped to
A′

1i = uA1iV
t . Therefore,

θ ′23
i = A′

1iA
′†
1i = uA1iA

†
1iu

† = uθ23
i u†,

ρ ′
i = (

A
′†
1iA

′
1i

)∗ = V
(
A

†
1iA1i

)∗
V † = VρiV

† = v ⊗ wρiv
† ⊗ w†.

Thus ρi and ρ ′
i are equivalent under the local unitary transformation v ⊗ w; from the results

of bipartite system [26] we have Tr
(
ξk
l

)α = Tr
(
ξ ′k

l

)α
and Tr

(
ηk

l

)β = Tr
(
η′k

l

)β
. Therefore (g)

and (h) hold.
Conversely, Tr(ργ ) = Tr(ρ ′γ ) imply that ρ and ρ ′ have the same eigenvalues. We now

prove that there exist common unitary matrices V1, V2, V3 such that |ν ′
i〉 = V1 ⊗ V2 ⊗ V3|νi〉

by using lemma 2 in [15].
From the relation Tr(ρi)

α = Tr(ρ ′
i )

α in (g) and condition (4), we have common unitary
matrices U1 and U23 for all i such that |ν ′

i〉 = U1 ⊗ U23|νi〉.
The relation Tr

(
ξk
l

)α = Tr
(
ξ ′k

l

)α
in (g) and condition (5) imply that ρi and ρ ′

i are

equivalent under local unitary transformations, ρ ′
i = Ui ⊗ ViρiU

†
i ⊗ V

†
i , according to the

results of bipartite system [26]. For the case i �= k in condition (5), (5) implies that there exist
common unitary matrices U and V such that ρ ′

i = U ⊗ VρiU
† ⊗ V †. To elucidate this we just

show the case n = 2. For a rank-two state ρ we have

ρ1 =
m1∑
j=1

α1
j

∣∣µ1
j

〉 〈
µ1

j

∣∣, ρ2 =
m2∑
j=1

α2
j

∣∣µ2
j

〉 〈
µ2

j

∣∣.

Tr
(
ξ 1
j

)α = Tr
(
ξ ′1

j

)α
implies that ξ 1

j and ξ ′1
j are equivalent under unitary transformations.

Therefore B1
j and B ′1

j have the same singular values. Equations
[
ξ 1
t , ξ 1

l

] = 0 (6)

and
[
η1

t , η
1
l

] = 0 (7)

imply that (from singular value decomposition) there exist common unitary matrices U1, U
′
1

and V1, V
′

1 such that

U1B
1
j V1 = U ′

1B
′1
jV

′
1. (8)

6
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While
[
ξ 2
t , ξ 2

l

] = 0 (9)

and
[
η2

t , η
2
l

] = 0 (10)

imply that there exist common unitary matrices U2, U
′
2 and V2, V

′
2 such that

U2B
2
j V2 = U ′

2B
′2
jV

′
2. (11)

From (6) and (9), we have U1 = U2. From (7) and (10), we have V1 = V2. Hence
B ′i

j = UBi
jV

t and
∣∣µ′i

j

〉 = U ⊗ V
∣∣µi

j

〉
, j = 1, . . . , mi . Therefore, ρ ′

i = U ⊗ VρiU
† ⊗ V †.

Hence ρ ′
i and ρi are equivalent under local unitary transformations.

Therefore, from lemma 2 in [15] we have that tripartite states |νi〉 and |ν ′
i〉 are

equivalent under local unitary transformations. In fact, there exist common unitary matrices
Vi, i = 1, 2, 3, such that |ν ′

i〉 = V1 ⊗ V2 ⊗ V3|νi〉, where V1 = WU1, V2 = U,V3 = V([
θ23
i , θ23

j

] = 0
)

imply that there exists common W for different νi). Therefore, we have

ρ ′ = V1 ⊗ V2 ⊗ V3ρV
†

1 ⊗ V
†

2 ⊗ V
†

3 .

Thus from (g) we get that ρ and ρ ′ are equivalent under local unitary transformations.
One can similarly prove that ρ and ρ ′ are equivalent under local unitary transformations
from (h). �

We have discussed the local invariants for arbitrary dimensional tripartite quantum mixed
states in C

K ⊗ C
M ⊗ C

N composite systems and have presented sets of invariants under local
unitary transformations for some classes of tripartite mixed states. The invariants in a set are
not necessarily independent, but they are sufficient to judge if two states in � or �i, i = 1, 2, 3,
are equivalent under local unitary transformations. For three qubit case, K = M = N = 2,
a set of invariants has been presented in [10, 11] for a special class of states. By using the
method in [14, 15], the results can be generalized to detect local equivalence for some special
classes of general multipartite states.
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